jueves, 24 de mayo de 2007

Ley de LENZ

Al igual que una corriente crea un campo magnético, un campo magnético puede crear una corriente eléctrica. Esto es una consecuencia del princípio de conservación de la energía:

Un sistema tiende a mantener su energía constante.
Como quiera que el magnetismo no es sino una de las formas en que se manifiesta la energía, resulta que una bobina intenta mantener su flujo magnético (su energía magnética almacenada) constante. Si causas externas lo hacen disminuir, la bobina reaccionará creando una corriente que mantenga el flujo inicial. Si, por el contrario, causas externas lo hacen aumentar, la bobina reaccionará creando una corriente que origine un flujo contrario, a fin de disminuir el flujo y mantenerlo en su valor inicial.

Naturalmente esta situación no se puede mantener, ya que una bobina, por sí sola, no es capaz de generar energía indefinidamente.
Pasado un cierto tiempo, la reacción de la bobina cesará y "aceptará" las condiciones impuestas desde el exterior.Este comportamiento de las bobinas fué descubierto experimentalmente por Lenz, quien enunció su Ley de la siguiente manera:

Ley de Lenz

"Cuando varía el flujo magnético que atraviesa una bobina, esta reacciona de tal manera que se opone a la causa que produjo la variación"
Es decir, si el flujo aumenta, la bobina lo disminuirá; si disminuye lo aumentará. Para conseguir estos efectos, tendrá que generar corrientes que, a su vez, creen flujo que se oponga a la variación. Se dice que en la bobina ha aparecido una CORRIENTE INDUCIDA, y, por lo tanto, UNA FUERZA ELECTROMOTRIZ INDUCIDA.

Se verá un ejemplo aclaratorio: Supongamos que la bobina, situada a la izquierda en la figura siguiente, tiene un flujo nulo.Por lo que la corriente I será nula también.

Si le acercamos un imán, parte del flujo de éste atravesará la propia bobina, por lo que el flujo de la bobina pasará de ser nulo a tener un valor.
La bonina reaccionará intentando anular este aumento de flujo.
INFORMACION OBTENIDA DE:

jueves, 3 de mayo de 2007

ReFrAcCiÒn



Tú vez los objetos que te rodean porque la luz rebota en ellos. Si miras algo dentro del agua, por ejemplo un remo o un lápiz, parece que está torcido. Ocurre así porque la luz se desvía, o se refracta, cuando pasa del agua al aire.


REFRACCIÓN

Es un fenómeno relacionado con la transmisión de las ondas, incluyendo la luz. Los rayos luminosos siguen una trayectoria rectilínea, pero cuando pasan de un medio de transporte a otro, se refracta (se “quiebran”), debido a que la luz tiene distancia velocidad según la densidad del material que atraviesa. Por ejemplo, cuando la luz pasa del aire al agua su velocidad se reduce. Esto hace que la luz se refracte, excepto cuando incide en perpendicular a la superficie.
TIPOS DE REFRACCIÓN
Refracción de la luz
Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de velocidad y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo.
Por otro lado, la velocidad de la penetración de la luz en un medio distinto del vacío está en relación con la longitud de la onda y, cuando un haz de luz blanca pasa de un medio a otro, cada color sufre una ligera desviación. Este fenómeno es conocido como
dispersión de la luz.

Refracción del sonido
Es la desviación que sufren las ondas cuando el sonido pasa de un medio a otro diferente. A diferencia de lo que ocurre en la reflexión, en la refracción, el ángulo de refracción ya no es igual al de incidencia.



Refracción de ondas de radio
El fenómeno de la refracción es un fenómeno que se observa en todo tipo de ondas. En el caso de las ondas de radio, la refracción es especialmente importante en la ionosfera, en la que se producen una serie continua de refracciones que permiten a las ondas de radio viajar de un punto del planeta a otro.

Refracción de ondas sísmicas
Otro ejemplo de refracción no ligado a ondas electromagnéticas es el de las ondas sísmicas. La velocidad de propagación de las ondas sísmicas depende de la densidad del medio de propagación y, por lo tanto, de la profundidad y de la composición de la región atravesada por las ondas. Se producen fenómenos de refracción en los siguientes casos:
Refracción entre la transición entre dos capas geológicas, especialmente entre el
manto y el núcleo.
En el manto, por pequeñas desviaciones de la densidad entre capas ascendentes menos densas y descendentes, más densas.

ÍNDICE DE REFRACCIÓN
Es una medida de la refracción de la luz. Cuando la luz pasa de un material transparente a otro, cambia de velocidad y se refracta. El índice de refracción indica el grado en que la luz es refractada al pasar de un medio al otro. Es igual a la velocidad de la luz en el primer medio dividida por la velocidad de la luz en el segundo. Cada material tiene un índice de refracción absoluto, que es la relación entre la velocidad de la luz en el vacío y en dicho material. Cuando mayor es el índice de refracción absoluta, más despacio viaja la luz.
Se simboliza con la letra n y se trata de un valor adimensional.
n = c / v
donde:
c: la velocidad de la luz en el vacío
v: velocidad de la luz en el medio cuyo índice se calcula (agua, vidrio, etc.).
La letra "n" representa el índice de refracción del medio.

LEY DE SNELL

Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano. En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.
Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad. Un ejemplo habitual es el de un objeto sumergido, observado desde encima del agua, como se muestra en la figura 3 (sólo se representan rayos oblicuos para ilustrar el fenómeno con más claridad). El rayo DB procedente del punto D del objeto se desvía alejándose de la normal, hacia el punto A. Por ello, el objeto parece situado en C, donde la línea ABC intersecta una línea perpendicular a la superficie del agua y que pasa por D.




CONCLUSION

Nosotros entendimos que cuando vemos un objeto es porque la luz rebota en ellos. Cuando miramos un objeto dentro del agua, por ejemplo un lápiz, parece que estuviera doblado o quebrado. Pasa esto porque la luz va con una velocidad x en el aire y si penetra en una sustancia más densa cambia su velocidad.

INFORMACION OBTENIDA DE: