lunes, 16 de abril de 2007

TERMODINÁMICA




Ley cero de la termodinámica




El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, entre otras) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas termodinámicas del sistema.
A este principio se le llama del
equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.






Enunciados principales que define a la


segunda ley de la termodinámica




La segunda ley de la termodinámica, que es una generalización de la experiencia, es una exposición cuyos artificios de aplicación no existen. Se tienen muchos enunciados de la segunda ley, cada uno de los cuales hace destacar un aspecto de ella, pero se puede demostrar que son equivalentes entre sí. Clausius la enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación). Este enunciado desecha la posibilidad de nuestro ambicioso refrigerador, ya que éste implica que para transmitir calor continuamente de un objeto frío a un objeto caliente, es necesario proporcionar trabajo de un agente exterior. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la dirección de la transmisión del calor. La dirección se puede invertir solamente por medio de gasto de un trabajo.

Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.

Para demostrar que los dos enunciados son equivalentes, necesitamos demostrar que si cualquiera de los enunciados es falso, el otro también debe serlo. Supóngase que es falso el enunciado de Clausius, de tal manera que se pudieran tener un refrigerador que opere sin que se consuma
el trabajo. Podemos usar una máquina ordinaria para extraer calor de un cuerpo caliente, con el objeto de hacer trabajo y devolver parte del calor a un cuerpo frío.






Muerte termica del universo




Es posible explicar la muerte mediante la entropía. Como se ha dicho, la entropía se puede interpertar como un aumento del desorden. Un ser vivo se puede considerar un sistema altamente ordenado, donde la materia se encuentra en una estructura muy heterogénea y compleja. Al envejecer, las células pierden la capacidad de mantenerse ordenadas, es decir, de conformar un cuerpo con partes bien diferenciadas; se va produciendo un desorden del cuerpo. Para mantener ese orden necesitan la información que se encuentra en el ADN, pero ésta es una molécula extremadamente ordenada que tiende a desordenarse (perdiendo la información almacenada) con cada mitosis celular (duplicación celular).
Únicamente las células cancerígenas son capaces de duplicarse tolerando la pérdida de información en su ADN, pero por otro lado pierden la capacidad de mantenerse ordenadas en el lugar que deben ocupar y de realizar las funciones que le son naturales. Así, en un
cáncer de pulmón, las células cancerígenas pueden establecerse en partes del cuerpo no destinadas a ellas, como el hígado: en el cáncer se produce un aumento de la entropía, más aún si se produce la muerte del individuo.
El cuerpo para mantener su orden consume energía de forma constante, aumentando la entropía del entorno al consumir alimentos y agua dulce (de menor entropía que la orina). Al morir, el cuerpo sigue siendo una estructura relativamente ordenada, que rápidamente (al no consumir energía) se desordena transformándose en moléculas más sencillas (descomposición). Se podría decir que la vida es un conjunto de elementos químicos que se encuentran de forma ordenada, y que para mantener ese orden necesitan consumir energía o moléculas con poca entropía. Con la muerte, de forma natural y espontánea, aumenta considerablemente la entropía.
Así pues, la muerte es una consecuencia de una tendencia general en la naturaleza ya que todos los procesos naturales tienden a un aumento de la entropía.










Proceso adiabático y no adiabático




En termodinámica se designa como proceso adiabático a aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico.
El término adiabático hace referencia a elementos que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático. Otro ejemplo es la temperatura adiabática de llama, que es la temperatura que podría alcanzar una llama si no hubiera pérdida de calor hacia el entorno. En climatización los procesos de humectación (aporte de
vapor de agua) son adiabáticos, puesto que no hay transferencia de calor, a pesar que se consiga variar la temperatura del aire y su humedad relativa.
El calentamiento y enfriamiento adiabático son procesos que comúnmente ocurren debido al cambio en la
presión de un gas. Esto puede ser cuantificado usando la ley de los gases ideales.










Energía interna de un sistema




La energía interna de la materia o de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación,traslación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales.
Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna reflejado en el aumento del calor del sistema completo o de la materia estudiada.








Fuentes de energia termica y sus ventajas




Las fuentes de energía son elaboraciones naturales más o menos complejas de las que el hombre puede extraer energía para realizar un determinado trabajo u obtener alguna utilidad.


Las fuentes de energía principalmente usadas, desde la Revolución Industrial hasta nuestros días, han sido los combustibles fósiles; por un lado el carbón para alimentar las máquinas de vapor industriales y de tracción ferrocarril así como los hogares, y por otro, el petróleo y sus derivados en la industria y el transporte (principalmente el automóvil), si bien éstas convivieron con aprovechamientos a menor escala de la energía eólica, hidráulica, la biomasa, etc.
Dicho modelo de desarrollo, sin embargo, está abocado al agotamiento de los recursos fósiles, sin posible reposición pues serían necesarios períodos de millones de años para su formación.
La búsqueda de fuentes de energía inagotables y el intento de los países industrializados de fortalecer sus economías nacionales reduciendo su dependencia de los combustibles fósiles, concentrados en territorios extranjeros tras la explotación y casi agotamiento de los recursos propios, les llevó a la adopción de la
energía nuclear y en aquellos con suficientes recursos hídricos, al aprovechamiento hidráulico intensivo de sus cursos de agua.


A finales del siglo XX se comenzó a cuestionar el modelo energético imperante por dos motivos:
Los problemas medioambientales suscitados por la combustión de combustibles fósiles, como los episodios de
smog de grandes urbes como Londres o Los Ángeles, o el calentamiento global del planeta.
Los riesgos del uso de la
energía nuclear, puestos de manifiesto en accidentes como Chernóbil.
Se propone entonces el uso de energías limpias, es decir, aquellas que reducen drásticamente los
impactos ambientales producidos, entre las que cabe citar el aprovechamiento de:




Energia solar




La energía solar es la energía obtenida directamente del Sol. La radiación solar incidente en la Tierra puede aprovecharse por su capacidad para calentar o directamente a través del aprovechamiento de la radiación en dispositivos ópticos o de otro tipo.




Ventajas:


*Limpia


*Sencillez de los principios aplicados


*Conversión directa


*Empieza a ser competitiva




Energía eólica




La energía eólica es la que se obtiene por medio del viento, es decir mediante la utilización de la energía cinética generada por efecto de las corrientes de aire.
El término eólico viene del latín Aeolicus, perteneciente o relativo a Éolo o
Eolo, dios de los vientos en la mitología griega y, por tanto, perteneciente o relativo al viento. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas. Es un tipo de energía verde.

Ventajas:


*Limpia


*Sencillez de los principios aplicados


*Conversión directa


*Empieza a ser competitiva




Energía hidráulica




Se denomina energía hidráulica o energía hídrica a aquella que se obtiene del aprovechamiento de las energías cinética y potencial de la corriente de ríos, saltos de agua o mareas. Es un tipo de energía verde cuando su impacto ambiental es mínimo y usa la fuerza hídrica sin represarla, caso contrario es considerada solo una forma de energía renovable.
Se puede transformar a muy diferentes escalas, existiendo desde hace siglos pequeñas explotaciones en las que la corriente de un río mueve un rotor de palas y genera un movimiento aplicado, por ejemplo, en molinos rurales. Sin embargo, la utilización más significativa la constituyen las
centrales hidroeléctricas de represas, aunque estas últimas no son consideradas formas de energía verde por el alto impacto ambiental que producen y por el uso de grandes cantidades de combustible fósil para los generadores.




Ventajas:


*Es una energía limpia


*No contaminante


*Su transformación es directa


*Es renovable




Todas ellas renovables.


Con respecto a las llamadas energías alternativas (viento, agua, sol y biomasa), cabe señalar que su explotación a escala industrial, es fuertemente contestada incluso por grupos ecologistas, dado que los impactos medioambientales de estas instalaciones y las líneas de distribución de energía eléctrica que precisan pueden llegar a ser importantes, especialmente, si como ocurre con frecuencia (caso de la energía eólica) se ocupan espacios naturales que habían permanecido ajenos al hombre.
Las fuentes de energía pueden ser renovables y no renovables.Las renovables como el Sol.Las no renovables como el carbón.






1 comentario:

k@r&n@ contrer@s dijo...

hola tocalla!!
pues esta muy bien tu tarea te felicito

shau!!